The Influence of Particle Size Distribution and Shell Imperfections on the Plasmon Resonance of Au and Ag Nanoshells
نویسندگان
چکیده
Au and Ag nanoshells are of interest for a wide range of applications. The plasmon resonance of such nanoshells is the property of interest and can be tuned in a broad spectral regime, ranging from the ultraviolet to the mid-infrared. To date, a large number of manuscripts have been published on the optics of such nanoshells. Few of these, however, address the effect of particle size distribution and metal shell imperfections on the plasmon resonance. Both are inherent to the chemical synthesis of metal nanoshells and therefore to a large extent unavoidable. It is of vital importance to understand their effect on the plasmon resonance, since this determines the scope and limitations of the technology and may have a direct impact on the application of such particles. Here, we elucidate the effect of particle size distribution and imperfections in the metal shell on the plasmon resonance of Au and Ag nanoshells. The size of the polystyrene core and the thickness of the Au and Ag shells are systematically varied to study their influence on the plasmon resonance, and the results are compared to values obtained through optical simulations using extended Mie theory and finite element method. Discrepancies between theory and practice are studied in detail and discussed extensively. Quantitative information on the minimum thickness of the metal shell, which is required to realize a satisfactory plasmon resonance of a metal nanoshell, is provided for Au and Ag.
منابع مشابه
A Study of the Influence of Percentage of Copper on the Structural and Optical Properties of Au-Cu Nanoparticle
Here we present our experimental results in synthesizing Au-Cu nano-particles with tunable localized surface plasmon resonance frequency through wet-chemical at temperature room. The reaction is performed in the presence of ascorbic acid as a reducing agent and polyvinyl pyrrolidone as capping agent via four different procedures: (1) mixture of 90% HAuCl4 and 10% CuSO4.5H2O precursors, (2) mixt...
متن کاملPlasmon response of nanoshell dopants in organic films: a simulation study
We examine the effect of an embedding medium refractive index on the plasmon resonant properties of silica core-gold shell nanoshells. The plasmon response is shifted to longer wavelengths with increasing refractive index of the dielectric host matrix, increasing in overall amplitude for nanoparticles in the dipole limit. For nanoshells of constant core-shell ratio, this plasmon shift increases...
متن کاملInfluence of Different Percentages of Copper on the Size and Optical Properties of Ag-Cu Nanoparticles Formed by Wet-Chemical Method
In this work, Ag-Cu nanoparticles (with different percentages of copper, 10%, 25%, 50%, 75% Cu) were synthesized by wet chemical method. Copper(II) sulfate and silver nitrate were taken as metal precursors, ascorbic acid as reducing agent and anhydride maleic (MA) as a modifier. The prepared nanoparticles were characterized by means of X-ray diffraction (XRD) technique and scanning electron mic...
متن کاملGradual Growth of Gold Nanoseeds on Silica for Silica@Gold Core-Shell Nanoparticles and Investigation of Optical Properties
Metal nanoshells consists of a dielectric core surrounded by a thin noble metal shell, possess unique optical properties that render nanoshells attractive for use in different technologies. This paper reports a facile method for growth of small gold nanoparticles on the functionalized surface of larger silica nanoparticles. Mono-dispersed silica particles and gold nanoparticles were prepared by...
متن کاملMesoscopic nanoshells: geometry-dependent plasmon resonances beyond the quasistatic limit.
The plasmon response of a spherical metallic shell becomes significantly more complex as its size is increased beyond the quasistatic limit. With increasing size and decreasing aspect ratio (r1/r2), higher order multipolar modes contribute in a more dominant manner, and two distinct core-shell geometries exist that provide the same dipole plasmon resonance, with differing relative multipolar co...
متن کامل